If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-13=16-10y^2
We move all terms to the left:
y^2-13-(16-10y^2)=0
We get rid of parentheses
y^2+10y^2-16-13=0
We add all the numbers together, and all the variables
11y^2-29=0
a = 11; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·11·(-29)
Δ = 1276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1276}=\sqrt{4*319}=\sqrt{4}*\sqrt{319}=2\sqrt{319}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{319}}{2*11}=\frac{0-2\sqrt{319}}{22} =-\frac{2\sqrt{319}}{22} =-\frac{\sqrt{319}}{11} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{319}}{2*11}=\frac{0+2\sqrt{319}}{22} =\frac{2\sqrt{319}}{22} =\frac{\sqrt{319}}{11} $
| 9-x-10=42 | | 15=-4y–9 | | 8r–27=-19 | | 3(b+2)+3=18 | | 4w^2-21-25w=0 | | 2(6k+5)=-38 | | 15+7x=-13 | | 7-x-2=4 | | 2m–8=-28 | | -2.4-3x=11.4 | | 8n-8=-10+6n | | 6(p=1)=3(p-12) | | 54=3(-5n+3) | | 17-x=26 | | 8x+1=2x+3x+28 | | 15-2m=-5+8m | | 17-x/2=15 | | -24=14y–5 | | -3=-6y+3y | | q/5+8=33 | | 1/3t+1/2t=1 | | 0=x²+12x-1 | | 48x^2+56x=-8 | | k2-15k+60=4 | | 10=2(d+3) | | m^2+14=9m | | 8(k-6)+58=2(4k+5 | | x-12-3=11 | | -5b-6=1-5(b+2) | | (a+5)^3=0 | | 6=k+17 | | 7x-(8-3x)=2 |